Ternary erbium chromium sulfides: structural relationships and magnetic properties.

نویسندگان

  • Paz Vaqueiro
  • Iwona Szkoda
  • Rodolfo D Sanchez
  • Anthony V Powell
چکیده

Single crystals of four erbium-chromium sulfides have been grown by chemical vapor transport using iodine as the transporting agent. Single-crystal X-ray diffraction reveals that in Er(3)CrS(6) octahedral sites are occupied exclusively by Cr(3+) cations, leading to one-dimensional CrS(4)(5-) chains of edge-sharing octahedra, while in Er(2)CrS(4), Er(3+), and Cr(2+) cations occupy the available octahedral sites in an ordered manner. By contrast, in Er(6)Cr(2)S(11) and Er(4)CrS(7), Er(3+) and Cr(2+) ions are disordered over the octahedral sites. In Er(2)CrS(4), Er(6)Cr(2)S(11), and Er(4)CrS(7), the network of octahedra generates an anionic framework constructed from M(2)S(5) slabs of varying thickness, linked by one-dimensional octahedral chains. This suggests that these three phases belong to a series in which the anionic framework may be described by the general formula [M(2n+1)S(4n+3)](x-), with charge balancing provided by Er(3+) cations located in sites of high-coordination number within one-dimensional channels defined by the framework. Er(4)CrS(7), Er(6)Cr(2)S(11), and Er(2)CrS(4) may thus be considered as the n = 1, 2, and infinity members of this series. While Er(4)CrS(7) is paramagnetic, successive magnetic transitions associated with ordering of the chromium and erbium sub-lattices are observed on cooling Er(3)CrS(6) (T(C)(Cr) = 30 K; T(C)(Er) = 11 K) and Er(2)CrS(4) (T(N)(Cr) = 42 K, T(N)(Er) = 10 K) whereas Er(6)Cr(2)S(11) exhibits ordering of the chromium sub-lattice only (T(N) = 11.4 K).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Transition Metals Incorporation on the Structural and Magnetic Properties of Magnesium Oxide Nanoparticles

Pure and doped magnesium oxide nanoparticles were successfully synthesized employing a sol-gel process. The synthesized nanoparticles were characterized by thermal differential analysis, X-ray powder diffraction, transmission electron microscopy, scanning electron microscope, energy-dispersive X-ray spectroscopy, and vibrating sample magnetometer. X-ray diffraction patterns confirmed the crysta...

متن کامل

Phase relationships and structural, magnetic, and thermodynamic properties of alloys in the pseudobinary Er5Si4-Er5Ge4 system

The room temperature crystal structures of Er5SixGe4−x alloys change systematically with the concentration of Ge from the orthorhombic Gd5Si4-type when x=4, to the monoclinic Gd5Si2Ge2 type when 3.5⩽x⩽3.9 and to the orthorhombic Sm5Ge4 type forx⩽3. The Curie-Weiss behavior of Er5SixGe4−x materials is consistent with the Er3+ state. The compounds order magnetically below 30 K, apparently adoptin...

متن کامل

A ternary Er-BiVO4/TiO2 complex heterostructure with excellent photocatalytic performance

Ternary erbium doped BiVO4/TiO2 complexes are synthesized by means of a simple impregnation method with good photoactivities under sun-like excitation for the degradation of phenol. From the structural and morphological characterization it has been stated that the presence of Er induces a slight stabilization of the tetragonal phase probably due to its incorporation in the BiVO4 lattice. Theref...

متن کامل

Co(III)@Fe3O4@SiO2 salen complex as a highly selective and recoverable magnetic nanocatalyst for the oxidation of sulfides and benzylic alcohols

In this study, Co (III) salen complex was synthesized and immobilized onto the surface of Fe3O4@SiO2 magnetic nanoparticle. The heterogeneous nanocatalyst was characterized by different techniques including X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), nitrogen adsorption−desorption isotherm (BET), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inorganic chemistry

دوره 48 4  شماره 

صفحات  -

تاریخ انتشار 2009